The undecidability of propositional adaptive logic
نویسندگان
چکیده
We investigate and classify the notion of final derivability of two basic inconsistency-adaptive logics. Specifically, the maximal complexity of the set of final consequences of decidable sets of premises formulated in the language of propositional logic is described. Our results show that taking the consequences of a decidable propositional theory is a complicated operation. The set of final consequences according to either the Reliability Calculus or the Minimal Abnormality Calculus of a decidable propositional premise set is in general undecidable, and can be Σ3-complete. These classifications are exact. For first order theories even finite sets of premises can generate such consequence sets in either calculus.
منابع مشابه
Equality propositional logic and its extensions
We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...
متن کاملUndecidability of the problem of recognizing axiomatizations for propositional calculi with implication
In this paper we consider propositional calculi, which are finitely axiomatizable extensions of intuitionistic implicational propositional calculus together with the rules of modus ponens and substitution. We give a proof of undecidability of the following problem for these calculi: whether a given finite set of propositional formulas constitutes an adequate axiom system for a fixed proposition...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملOn 2 nd Order Intuitionistic Propositional Calculus with Full Comprehension
(x not free in A, HPC is Heyting's predicate calculus) for the class of Kripke models of constant domains. See G6rnemann [1] for an algebraic completeness proof and Gabbay I-2] for other details. The proof of undecidability uses the same method introduced in Gabbay [3, 4] and used to obtain undecidability results for a large class of intuitionistic theories. Although some versions of the monadi...
متن کاملTAKASHI NAGASHIMA Game Logic and its Applications
This paper provides a logic framework for investigations of game theoretical problems. We adopt an infinitary extension of classical predicate logic as the base logic of the framework. The reason for an infinitary extension is to express the common knowledge concept explicitly. Depending upon the choice of axioms on the knowledge operators, there is a hierarchy of logics. The limit case is an i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Synthese
دوره 169 شماره
صفحات -
تاریخ انتشار 2007